Čech cohomology - definição. O que é Čech cohomology. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Čech cohomology - definição


Čech cohomology         
  •  accessdate = January 16, 2014}}</ref>
COHOMOLOGY THEORY BASED ON THE INTERSECTION PROPERTIES OF OPEN COVERS OF A TOPOLOGICAL SPACE
Cech cohomology; Čech cocycle; Chech cohomology; Cocycle condition
In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.
Stone–Čech compactification         
  • 250px
A UNIVERSAL MAP FROM A TOPOLOGICAL SPACE X TO A COMPACT HAUSDORFF SPACE ΒX, SUCH THAT ANY MAP FROM X TO A COMPACT HAUSDORFF SPACE FACTORS THROUGH ΒX UNIQUELY; IF X IS TYCHONOFF, THEN X IS A DENSE SUBSPACE OF ΒX
Stone Cech compactification; Stone-Čech compactification; Stone-Cech compactification; Štone-Cech compactification; Stone-Chech compactification; Stone-cech compactification; ΒN; Stone cech compactification; Stone-AOEech compactification; Stone-chech; Stone–Chech compactification; Stone Cech Compactification; Stone-Cech Compactification; Stone–Cech compactification; Stone-Cech; Stone-Czech compactification; Čech–Stone compactification; Cech–Stone compactification; Čech-Stone compactification; Cech-Stone compactification; Stone–Čech compactification Theorem; Stone-Čech compactification Theorem
In the mathematical discipline of general topology, Stone–Čech compactification (or Čech–Stone compactificationM. Henriksen, "Rings of continuous functions in the 1950s", in Handbook of the History of General Topology, edited by C.
Gelfand–Fuks cohomology         
In mathematics, Gelfand–Fuks cohomology, introduced in , is a cohomology theory for Lie algebras of smooth vector fields. It differs from the Lie algebra cohomology of Chevalley-Eilenberg in that its cochains are taken to be continuous multilinear alternating forms on the Lie algebra of smooth vector fields where the latter is given the C^{\infty} topology.